博客
关于我
曲奇饼问题
阅读量:751 次
发布时间:2019-03-22

本文共 707 字,大约阅读时间需要 2 分钟。

使用贝叶斯公式计算条件概率

案例背景

碗1和碗2各放30个香草曲奇饼和10个巧克力曲奇饼,分别与10个香草曲奇饼和10个巧克力曲奇饼。我们需要计算从碗1取出香草曲奇饼的概率。

通过贝叶斯定理,可以得到公式:[ P(B_1|V) = \frac{P(B_1) \cdot P(V|B_1)}{P(V)} ]

其中:

  • ( B_1 ):碗1。
  • ( V ):取出的是香草曲奇饼。

概率定义

  • ( P(B_1) = 0.5 )(碗1被选中的概率)。
  • ( P(V|B_1) = \frac{30}{40} = 0.75 )(从碗1中取到香草曲奇饼的概率)。
  • ( P(V) ):取到香草曲奇饼的总概率。
  • 计算总概率

    总样本空间为两个碗,每个碗有40个曲奇饼,总共80个曲奇饼。其中:

    • 香草曲奇饼总数:30(碗1) + 10(碗2)= 40个。
    • 巧克力曲奇饼总数:10(碗1) + 10(碗2)= 20个。

    因此:[ P(V) = \frac{40}{80} = 0.5 ]

    计算条件概率

    代入贝叶斯公式:[ P(B_1|V) = \frac{0.5 \cdot 0.75}{0.5} = 0.6 ]

    即,从碗1中取到香草曲奇饼的概率为60%。

    Python验证

    from thinkbayes import Pmfpmf = Pmf()pmf.Set('Bow1', 0.5)pmf.Set("Bow2", 0.5)pmf.Mult('Bow1', 0.75)pmf.Mult('Bow2', 0.5)pmf.Normalize()print(pmf.Prob('Bow1'))

    输出结果为:

    0.6

    验证结果正确,说明计算无误。

    转载地址:http://eigwk.baihongyu.com/

    你可能感兴趣的文章
    npm的常用配置项---npm工作笔记004
    查看>>
    npm的问题:config global `--global`, `--local` are deprecated. Use `--location=global` instead 的解决办法
    查看>>
    npm编译报错You may need an additional loader to handle the result of these loaders
    查看>>
    npm设置淘宝镜像、升级等
    查看>>
    npm设置源地址,npm官方地址
    查看>>
    npm设置镜像如淘宝:http://npm.taobao.org/
    查看>>
    npm配置安装最新淘宝镜像,旧镜像会errror
    查看>>
    NPM酷库052:sax,按流解析XML
    查看>>
    npm错误 gyp错误 vs版本不对 msvs_version不兼容
    查看>>
    npm错误Error: Cannot find module ‘postcss-loader‘
    查看>>
    npm,yarn,cnpm 的区别
    查看>>
    NPOI
    查看>>
    NPOI之Excel——合并单元格、设置样式、输入公式
    查看>>
    NPOI初级教程
    查看>>
    NPOI利用多任务模式分批写入多个Excel
    查看>>
    NPOI在Excel中插入图片
    查看>>
    NPOI将某个程序段耗时插入Excel
    查看>>
    NPOI格式设置
    查看>>
    NPOI设置单元格格式
    查看>>
    Npp删除选中行的Macro录制方式
    查看>>