博客
关于我
曲奇饼问题
阅读量:751 次
发布时间:2019-03-22

本文共 707 字,大约阅读时间需要 2 分钟。

使用贝叶斯公式计算条件概率

案例背景

碗1和碗2各放30个香草曲奇饼和10个巧克力曲奇饼,分别与10个香草曲奇饼和10个巧克力曲奇饼。我们需要计算从碗1取出香草曲奇饼的概率。

通过贝叶斯定理,可以得到公式:[ P(B_1|V) = \frac{P(B_1) \cdot P(V|B_1)}{P(V)} ]

其中:

  • ( B_1 ):碗1。
  • ( V ):取出的是香草曲奇饼。

概率定义

  • ( P(B_1) = 0.5 )(碗1被选中的概率)。
  • ( P(V|B_1) = \frac{30}{40} = 0.75 )(从碗1中取到香草曲奇饼的概率)。
  • ( P(V) ):取到香草曲奇饼的总概率。
  • 计算总概率

    总样本空间为两个碗,每个碗有40个曲奇饼,总共80个曲奇饼。其中:

    • 香草曲奇饼总数:30(碗1) + 10(碗2)= 40个。
    • 巧克力曲奇饼总数:10(碗1) + 10(碗2)= 20个。

    因此:[ P(V) = \frac{40}{80} = 0.5 ]

    计算条件概率

    代入贝叶斯公式:[ P(B_1|V) = \frac{0.5 \cdot 0.75}{0.5} = 0.6 ]

    即,从碗1中取到香草曲奇饼的概率为60%。

    Python验证

    from thinkbayes import Pmfpmf = Pmf()pmf.Set('Bow1', 0.5)pmf.Set("Bow2", 0.5)pmf.Mult('Bow1', 0.75)pmf.Mult('Bow2', 0.5)pmf.Normalize()print(pmf.Prob('Bow1'))

    输出结果为:

    0.6

    验证结果正确,说明计算无误。

    转载地址:http://eigwk.baihongyu.com/

    你可能感兴趣的文章
    Nginx之二:nginx.conf简单配置(参数详解)
    查看>>
    Nginx从入门到精通
    查看>>
    Nginx从入门到精通(全)
    查看>>
    Nginx从安装到高可用,一篇搞定!
    查看>>
    Nginx代理websocket配置(解决websocket异常断开连接tcp连接不断问题)
    查看>>
    Nginx代理初探
    查看>>
    nginx代理地图服务--离线部署地图服务(地图数据篇.4)
    查看>>
    Nginx代理外网映射
    查看>>
    Nginx代理模式下 log-format 获取客户端真实IP
    查看>>
    Nginx代理解决跨域问题(导致图片只能预览不能下载)
    查看>>
    Nginx代理访问提示ERR_CONTENT_LENGTH_MISMATCH
    查看>>
    Nginx代理配置详解
    查看>>
    Nginx代理静态资源(gis瓦片图片)实现非固定ip的url适配网络环境映射ip下的资源请求解决方案
    查看>>
    Nginx代理静态资源(gis瓦片图片)实现非固定ip的url适配网络环境映射ip下的资源请求解决方案
    查看>>
    nginx优化日志拒绝特定404请求写入
    查看>>
    Nginx优化解析
    查看>>
    Nginx使用proxy_cache指令设置反向代理缓存静态资源
    查看>>
    Nginx做反向代理时访问端口被自动去除
    查看>>
    Nginx入门教程-简介、安装、反向代理、负载均衡、动静分离使用实例
    查看>>
    Nginx入门简介和反向代理、负载均衡、动静分离理解
    查看>>