博客
关于我
曲奇饼问题
阅读量:751 次
发布时间:2019-03-22

本文共 707 字,大约阅读时间需要 2 分钟。

使用贝叶斯公式计算条件概率

案例背景

碗1和碗2各放30个香草曲奇饼和10个巧克力曲奇饼,分别与10个香草曲奇饼和10个巧克力曲奇饼。我们需要计算从碗1取出香草曲奇饼的概率。

通过贝叶斯定理,可以得到公式:[ P(B_1|V) = \frac{P(B_1) \cdot P(V|B_1)}{P(V)} ]

其中:

  • ( B_1 ):碗1。
  • ( V ):取出的是香草曲奇饼。

概率定义

  • ( P(B_1) = 0.5 )(碗1被选中的概率)。
  • ( P(V|B_1) = \frac{30}{40} = 0.75 )(从碗1中取到香草曲奇饼的概率)。
  • ( P(V) ):取到香草曲奇饼的总概率。
  • 计算总概率

    总样本空间为两个碗,每个碗有40个曲奇饼,总共80个曲奇饼。其中:

    • 香草曲奇饼总数:30(碗1) + 10(碗2)= 40个。
    • 巧克力曲奇饼总数:10(碗1) + 10(碗2)= 20个。

    因此:[ P(V) = \frac{40}{80} = 0.5 ]

    计算条件概率

    代入贝叶斯公式:[ P(B_1|V) = \frac{0.5 \cdot 0.75}{0.5} = 0.6 ]

    即,从碗1中取到香草曲奇饼的概率为60%。

    Python验证

    from thinkbayes import Pmfpmf = Pmf()pmf.Set('Bow1', 0.5)pmf.Set("Bow2", 0.5)pmf.Mult('Bow1', 0.75)pmf.Mult('Bow2', 0.5)pmf.Normalize()print(pmf.Prob('Bow1'))

    输出结果为:

    0.6

    验证结果正确,说明计算无误。

    转载地址:http://eigwk.baihongyu.com/

    你可能感兴趣的文章
    Objects.equals有坑
    查看>>
    Object常用方法
    查看>>
    Object方法的finalize方法
    查看>>
    Object类有哪些方法,hashcode方法的作用,为什么要重写hashcode方法?
    查看>>
    Object类有哪些方法?各有什么作用?
    查看>>
    Objenesis创建类的实例
    查看>>
    OBObjective-c 多线程(锁机制) 解决资源抢夺问题
    查看>>
    OBS studio最新版配置鉴权推流
    查看>>
    Obsidian 彩色标题
    查看>>
    Obsidian的使用-ChatGPT4o作答
    查看>>
    Obsidian笔记记录GPT回复的数学公式无缝转化插件Katex to mathjax
    查看>>
    ObsoleteAttribute 可适用于除程序集、模块、参数或返回值以外的所有程序元素。 将元素标记为过时可以通知用户:该元素在产品的未来版本中将被移除。...
    查看>>
    OC block声明和使用
    查看>>
    OC Xcode快捷键
    查看>>
    oc 中的.m和.mm文件区别
    查看>>
    OC 中的重写 OC中没有重载 以及隐藏
    查看>>
    OC 内存管理黄金法则
    查看>>
    oc57--Category 分类
    查看>>
    occi库在oracle官网的下载针对vs2008
    查看>>
    OceanBase 安装使用详细说明
    查看>>